Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells.

نویسندگان

  • Francesco Natali
  • Luisa Siculella
  • Serafina Salvati
  • Gabriele V Gnoni
چکیده

Glial cells play a pivotal role in brain fatty acid metabolism and membrane biogenesis. However, the potential regulation of lipogenesis and cholesterologenesis by fatty acids in glial cells has been barely investigated. Here, we show that physiologically relevant concentrations of various saturated, monounsaturated, and polyunsaturated fatty acids significantly reduce [1-(14)C]acetate incorporation into fatty acids and cholesterol in C6 cells. Oleic acid was the most effective at depressing lipogenesis and cholesterologenesis; a decreased label incorporation into cellular palmitic, stearic, and oleic acids was detected, suggesting that an enzymatic step(s) of de novo fatty acid biosynthesis was affected. To clarify this issue, the activities of acetyl-coenzyme A carboxylase (ACC) and FAS were determined with an in situ digitonin-permeabilized cell assay after incubation of C6 cells with fatty acids. ACC activity was strongly reduced ( approximately 80%) by oleic acid, whereas no significant change in FAS activity was observed. Oleic acid also reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). The inhibition of ACC and HMGCR activities is corroborated by the decreases in ACC and HMGCR mRNA abundance and protein levels. The downregulation of ACC and HMGCR activities and expression by oleic acid could contribute to the reduced lipogenesis and cholesterologenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-16: Metabolism of Exogenous Fatty Acids, Fatty Acid-Mediated Cholesterol Efflux, PKA and PKC Pathways in Boar Sperm Acrosome Reaction

Background: For understanding the roles of fatty acids on the induction of acrosome reaction which occurs under association of cholesterol efflux and PKA or PKC pathways in boar spermatozoa, metabolic fate of alone and combined radiolabeled 14C-oleic acid and 3H-linoleic acid incorporated in the sperm was compared, and behavior of cholesterol and effects of PKA and PKC inhibitors upon fatty aci...

متن کامل

Oleic Acid and Hydroxytyrosol Inhibit Cholesterol and Fatty Acid Synthesis in C6 Glioma Cells

Recently, the discovery of natural compounds capable of modulating nervous system function has revealed new perspectives for a healthier brain. Here, we investigated the effects of oleic acid (OA) and hydroxytyrosol (HTyr), two important extra virgin olive oil compounds, on lipid synthesis in C6 glioma cells. OA and HTyr inhibited both de novo fatty acid and cholesterol syntheses without affect...

متن کامل

Niacin accelerates intracellular ApoB degradation by inhibiting triacylglycerol synthesis in human hepatoblastoma (HepG2) cells.

The mechanism by which the potent drug niacin decreases apoB-containing atherogenic lipoproteins and prevents coronary disease is unclear. Utilizing human hepatoblastoma (HepG2) cells as an in vitro model, we have examined the effect of niacin on intracellular degradation of apoB and the regulatory mechanisms involved in apoB processing. Niacin significantly increased apoB degradation in a dose...

متن کامل

Triacylglycerol-rich lipoprotein cholesterol is derived from the plasma membrane in CaCo-2 cells.

The source for triacylglycerol-rich lipoprotein cholesterol was investigated in CaCo-2 cells grown on filters separating an upper and a lower well. Oleic acid, a fatty acid that promotes triacylglycerol-rich lipoprotein synthesis and secretion in CaCo-2 cells, increased the vesicular-mediated influx of plasma membrane cholesterol to the endoplasmic reticulum. Unesterified and esterified cholest...

متن کامل

Lipid and ganglioside alterations in tumor cells treated with antimitotic oleyl glycoside.

Oleyl 2-acetamido-2-deoxy-α-D-glucopyranoside (1) was previously shown to exhibit antimitotic activity on glioma (C6) and melanoma (A375) cell lines. Preliminary studies about its mechanism of action using (1)H MAS NMR suggested that 1 may be altering the metabolism of lipids. We have now studied the effect of 1 on the fatty acid, sphingolipid and ganglioside content in a line of carcinomic hum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 48 9  شماره 

صفحات  -

تاریخ انتشار 2007